
Computers & Security 92 (2020) 101777

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Protocol Proxy: An FTE-based covert channel

Jonathan Oakley
∗, Lu Yu, Xingsi Zhong, Ganesh Kumar Venayagamoorthy, Richard Brooks

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA

a r t i c l e i n f o

Article history:

Received 25 September 2019

Revised 24 December 2019

Accepted 22 February 2020

Available online 24 February 2020

Keywords:

Covert channel

Format Transforming Encryption (FTE)

Steganography

Traffic analysis

Deep Packet Inspection (DPI)

Pluggable transport (PT)

Deterministic Hidden Markov Model (HMM)

Synchrophasor

a b s t r a c t

In a hostile network environment, users must communicate without being detected. This involves blend-

ing in with the existing traffic. In some cases, a higher degree of secrecy is required. We present a proof-

of-concept format transforming encryption (FTE)-based covert channel for tunneling TCP traffic through

protected static protocols. Protected static protocols are UDP-based protocols with variable fields that can-

not be blocked without collateral damage, such as power grid failures. We (1) convert TCP traffic to UDP

traffic, (2) introduce observation-based FTE, and (3) model interpacket timing with a deterministic Hid-

den Markov Model (HMM). The resulting Protocol Proxy has a very low probability of detection and is

an alternative to current covert channels. We tunnel a TCP session through a UDP protocol and guaran-

tee delivery. Observation-based FTE ensures traffic cannot be detected by traditional rule-based analysis

or DPI. A deterministic HMM ensures the Protocol Proxy accurately models interpacket timing to avoid

detection by side-channel analysis. Finally, the choice of a protected static protocol foils stateful protocol

analysis and causes collateral damage with false positives.

© 2020 Elsevier Ltd. All rights reserved.

1

m

s

w

h

g

n

h

t

c

c

v

w

t

n

d

g

t

t

m

s

fi

t

o

s

r

F

a

i

2

(

(

2

f

b

h

h

0

. Introduction

Traffic analysis classifies network traffic using observable infor-

ation. Network engineers use traffic analysis to ensure quality of

ervice and identify threats. As a result, the development of hard-

are and software tools that quickly and effectively classify traffic

as been encouraged. Commercial traffic analysis tools are used by

overnments to block access to websites that counter their current

arrative (Heydari et al., 2017). Tools for countering traffic analysis

ave been developed for both criminal use and covert channels.

Tor is a popular overlay network that routes traffic through

hree randomly chosen nodes on the Internet. Tor uses nested en-

ryption to ensure messages cannot be intercepted. The client en-

rypts packets. Each relay node decrypts the outermost layer, re-

ealing another encrypted layer for the next hop to decrypt. By

rapping encryption (like the layers of an onion), it is possible

o encrypt traffic so each node only knows its neighbors. This is

ot a silver bullet. In contested network environments, it is easy to

etect and block Tor (Dingledine, 2011). To prevent blocking, plug-

able transports (PTs) were developed to obfuscate Tor’s traffic pat-

erns.

PT developers must ensure their tools are able to penetrate na-

ion state firewalls while authoritarian governments must deter-

ine the optimal defense (Garnaev et al., 2016). Some popular PTs
∗ Corresponding author.

E-mail address: joakley@g.clemson.edu (J. Oakley).

ttps://doi.org/10.1016/j.cose.2020.101777

167-4048/© 2020 Elsevier Ltd. All rights reserved.
imply wrap encrypted traffic with a new header to allow TLS traf-

c to pass through firewalls (Wiley, 2011; Yawning, 2019). At first,

his may seem like an elegant solution, but it is simple to add an-

ther firewall rule to block this traffic. This is security through ob-

curity.

Format Transformation Encryption (FTE) is a form of steganog-

aphy that translates network traffic into a host protocol. 1 Previous

TE implementations used regular expressions (Dyer et al., 2013)

nd context free grammars (Dyer et al., 2015). Padding and rerout-

ng has obfuscated traffic and removed side-channels (Guan et al.,

001). In previous work, we used FTE and hidden Markov models

HMMs) to translate traffic flows into DNS requests and responses

 Fu et al., 2016; 2017) and smart grid sensor traffic (Zhong et al.,

015b). Fridrich determined an upper bound on the amount of in-

ormation that could be steganographically encoded in JPEG images

efore distortions were visually detected (Fridrich, 2006). HMMs

ave some notable advantages:

1. data windowing of HMMs (Schwier et al., 2011) makes them

effective for both protocol detection and mimicry,

2. tools for differentiating HMMs are well defined (Schwier et al.,

2011), and

3. a normalized metric space can directly measure the quality of
protocol mimicry (Lu et al., 2013).

1 The host protocol refers to the protocol being mimicked.

https://doi.org/10.1016/j.cose.2020.101777
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101777&domain=pdf
mailto:joakley@g.clemson.edu
https://doi.org/10.1016/j.cose.2020.101777

2 J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777

Fig. 1. Protocol Proxy architecture with relevant sections indicated.

T

c

t

K

o

Y

a

s

r

I

P

t

e

(

c

t

c

m

s

w

t

r

c

q

i

C

c

t

i

r

(

l

n

a

b

c
We propose security through collateral damage. Certain proto-

cols are more expensive to block than others. Usually, blocking the

wrong TLS stream has little collateral damage other than disgrun-

tled users.

We chose Synchrophasor traffic for our FTE implementation, but

another example is Network Time Protocol (NTP) traffic. We use

Synchrophasor traffic because we have access to Clemson’s Real-

ime Power and Intelligent System (RTPIS, 2019) Laboratory and

real Synchrophasor traffic. 2 To accomplish this transformation, we

made the following novel contributions:

1. An architecture to tunnel TCP traffic through UDP traffic.

2. Real-time observation-based format transforming encryption

(FTE) (Zhong et al., 2015b).

3. A theoretical upper bound on the channel capacity of

observation-based FTE.

4. Emulating the packet timing of a host protocol.

5. A proxy capable of tunneling SSH (TCP) through power-grid

Synchrophasor traffic (UDP) in a statistically indistinguishable

manner.

In Section 2 , we introduce related work. In Section 3 , we justify

observation-based FTE as a undetectable communication channel.

In Section 4 , we provide the mathematical background behind de-

terministic HMMs. In Section 5 , we provide the system architecture

and justify our design decisions. Figure 1 shows our high-level sys-

tem architecture: Section 5.1 describes observation-based format

transforming encryption using our novel method. Section 5.2 de-

scribes massaging packet timing with a deterministic HMM in-

ferred using the method described in Sections 4.1 , and 5.3 de-

scribes how everything fits the overall Protocol Proxy architecture.

Section 6 provides the experimental setup, and Section 7 details

our results. Finally, we provide our closing thoughts and future

work in Section 8 .

2. Related work

Creating covert online communication tools has been the fo-

cus of many privacy advocacy groups. Since the data in covert
2 Synchrophasor traffic is a UDP-based protocol generated by Phasor Measure-

ment Units (PMUs) that contains alternating current phase measurements. This pro-

tocol is used to balance the load at different points in the power grid.

P

c

(

hannels is encrypted, the goal is to balance probability of detec-

ion with throughput based on the desired application (Smith and

night, 2010). Timing side-channels are used when low probability

f detection is prioritized over throughput (Kiyavash et al., 2013;

ao et al., 2009).

Named Data Networking (NDN) posits an alternative internet

rchitecture based on content delivery (Zhang et al., 2014). Con-

umers express interest in a topic to NDN routers. These NDN

outers check their Content Stores to see if an interest is cached.

f the information is not available, the router adds the interest to a

ending Interest Table and forwards the interest upstream according

o the Forwarding Information Base and Forwarding Strategy . Tsudik

t. al proposed an anonymous communication network using NDN

 Tsudik et al., 2016). Cui et al. proposed a model for preventing

ensorship using smart NDN routers (Cui et al., 2016). Neither of

hese solutions addresses the issue of covert communications in a

ontested environment.

Ambrosin et. al proposed a method for delay-based covert com-

unication using cache techniques (Ambrosin et al., 2014). Given a

ender and receiver share an NDN router at some point in the net-

ork, the sender and receiver can communicate using the round

rip time (RTT) of the receiver’s interest requests. The sender and

eceiver agree on C 0 and C 1 out-of-band. The sender requests a

ertain interest, C b , and the receiver receives the message by re-

uesting both C 0 and C 1 . By comparing the RTT of both C 0 and C 1 ,

t is possible to determine which interest the sender requested–

 b will have a shorter RTT since it already exists in the router’s

ache. While this covert channel is interesting, it would be easy

o detect in Iran or China since CCNx (the NDN implementation)

s not widely used. The traffic would be anomalous in that envi-

onment and could be used to identify users before being blocked

 Mosko, 2014).

Tor (Tor, 2019) anonymity network wraps network traffic in

ayers of encryption. Each layer can only be decrypted by the

ext hop in the onion network. While it provides anonymous

ccess to the Internet, the Tor protocol is easy to detect and

lock (Dingledine, 2011; Winter and Lindskog, 2012). Undetectable

ommunication was not one of Tor’s goals, but it spawned the

luggable Transport project to address this challenge and en-

ourage the development of other covert communication tools

 Internews, 2017).

J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777 3

c

s

(

b

p

p

T

H

p

O

s

t

c

(

a

n

v

w

w

t

t

fi

i

S

u

f

u

i

(

s

M

p

m

a

p

p

M

c

t

c

s

c

(

f

l

m

c

b

a

i

w

r

b

i

w

r

s

k

a

p

e

i

f

i

(

2

w

m

t

m

b

2

n

P

t

t

h

w

b

n

t

u

l

Z

U

t

t

f

3

b

y

m

j

c

p

a

i

e

s

t

c

d

t

r

fi

t

a

a

f

i

p

M

p

a

(
Pluggable Transports (Pluggable Transports, 2020) address this

oncern. PTs offer a generic way to obfuscate traffic. Shape-

hifting PTs transform traffic into a different protocol. SkypeMorph

 Mohajeri Moghaddam et al., 2012) makes network traffic resem-

le a Skype session. StegoTorus (Weinberg et al., 2012) demulti-

lexes connections to avoid traffic analysis and uses steganogra-

hy to hide information in different protocols (including Skype). In

he parrot is dead: Observing unobservable network communications ,

oumansadr et al. (2013a) found both approaches fell short of true

rotocol mimicry. In both cases, handshake packets were incorrect.

ther flaws were noted with StegoTorus’s implementation of HTTP

teganography (Houmansadr et al., 2013a). Censorspoofer mimics

he Ekiga VoIP software, but it also falls short of mimicking proto-

ol intricacies (Houmansadr et al., 2013a).

A number of PTs scramble traffic to remove fingerprints. Obfs2

 obfsproxy, 2015), Obfs3 (obfsproxy, 2015), Obfs4 (Yawning, 2019),

nd ScrambleSuite (Winter et al., 2013) each attempt to remove a

etwork fingerprint by scrambling the data. Dust2 and its previous

ersion (Dust) change statistical properties of traffic to bypass fire-

alls (Wiley, 2011). With technologies like software defined net-

orking (SDN), these statistical PTs will likely be blocked by adap-

ive firewalls.

Recent PTs use domain fronting . Traffic is sent to a benign des-

ination (Google, Amazon, Azure, etc.) and allowed through the

rewall because blocking such a large domain would cause un-

ntended collateral damage. FlashProxy (Moshchuk et al., 2008),

nowFlake (SnowFlake, 2016), and meek (Fifield et al., 2015) all

se variations of domain fronting . This approach has been success-

ul but is not condoned by companies whose domains are being

sed since it exposes them to potential backlash.

FTE PTs are a subset of shape-shifting PTs that steganograph-

cally encode traffic using values typical of the host protocol

 Dyer et al., 2013). It is best to use a widely adopted protocol,

uch as DHCP (Rios et al., 2013) or VoIP (Schmidt et al., 2018).

arionette (Dyer et al., 2015) is a shape-shifting PT that uses a

robabilistic context-free grammar (PCFG) and production rules to

imic the host protocol. The PCFG ensures traffic is syntactically

nd semantically correct and production rules occur at the ex-

ected frequency. Determining the appropriate PCFG to model a

rotocol is an open research question (Dyer et al., 2013; 2015).

arionette ensures interpacket timing, packet size, and session

ount mimic the host protocol.

Refraction Networking (TapDance) (Wustrow et al., 2014) spoofs

he destination IP address. If the packet is routed through a de-

oy router, the true destination IP address is substituted for the

poofed address. Recent work has shown it may be inexpensive to

ensor decoy routers (Schuchard et al., 2012). Alternatively, TARN

 Yu et al., 2017) provides an approach that mixes traffic from dif-

erent autonomous systems at the software defined exchange (SDX)

evel. This provides a high level of anonymity and is resistant to a

alicious ISP or BGP injection, but it is not realistic for a covert

hannel. Network-based moving target defense solutions have also

een proposed (Heydari et al., 2017) for covert channels.

GNUnet (GNUnet, 20 02), I2P (I2P, 20 03), and (Freenet, 20 01)

ll seek to provide anonymous access to the Internet. GNUnet

s a toolbox for developing secure decentralized applications, but

idespread censorship is possible (Kügler, 2003). I2P uses garlic

outing (an onion-based routing protocol) to route traffic securely,

ut I2P is meant to be a self-contained network. I2P can be blocked

f an adversary controls a small number of routers in the net-

ork and uses traditional IP-based filtering (Hoang et al., 2018). I2P

outers can be identified because hiding I2P traffic was not a de-

ign goal (I2P’s Threat Model, 2010). Freenet focuses on using prior

nowledge to form connections, and it is possible to passively (or

ctively) scan the network for nodes (Roos et al., 2014). It arguably

rovides more anonymity, but it is resource intensive. Many gov-
rnments block access to these tools, which makes the first hop

mportant.

Traditional Virtual Private Networks (VPNs) are not usually ef-

ective in a contested environment because encrypted data can

ndicate malicious activity (Brandom, 2018). As a result, Psiphon

 Psiphon, 2006), Lantern (Lantern, 2013), and Ultrasurf (Ultrasurf,

002) have started using PTs. With Lantern, traffic is only for-

arded through the PT if it is likely to be blocked.

Image steganography is also an effective means of covert com-

unication. Fridrich investigated the relationship between distor-

ion and information capacity (Fridrich, 2006). Unfortunately, the

odel derived in Fridrich (2006) does not directly apply to FTE-

ased covert channels.

.1. Previous work

This article extends the work by Zhong et al. (2015b) where

etwork traffic was manipulated offline as a proof-of-concept. The

rotocol Proxy architecture presented in this work is a novel con-

ribution designed to address the issues that result from real-time

raffic manipulation. The observation-based FTE algorithm was en-

anced from Zhong et al. (2015b) to increase throughput. In this

ork, we present a theoretical bound on the information that can

e encoded using observation-based FTE. Zhong et al. (2015b) ma-

ipulated packet timing in an offline proof-of-concept by setting

he packet timestamp in the PCAP file. In this work, we manip-

late packet timing in real-time, which creates additional chal-

enges that are addressed by the novel Protocol Proxy architecture.

hong et al. (2015b) did not consider guaranteed delivery for a

DP protocol, which must be addressed when manipulating TCP

raffic in realtime. Finally, while Zhong et al. (2015b) used HMMs

o manipulate packet timing, they did not consider the need for

ormal model verification.

. Undetectability

Detecting protocol mimicry can be done in several ways: rule-

ased analysis, deep packet inspection (DPI), stateful protocol anal-

sis, side-channel analysis, and statistical analysis. If a packet

atches a set of predetermined rules, then it is accepted (or re-

ected). Rules typically look only at the packet headers. They con-

entrate on IP source, IP destination, source port, destination port,

rotocol type (TCP or UDP), and several other fields. These fields

re available in the packet header without the need for DPI, so this

s the first line of defense for high throughput use cases. If pack-

ts are destined for IP addresses that belong to a malicious web

ite, they will be dropped before they leave their respective au-

onomous systems. Source and destination ports are also used to

lassify traffic (Kim et al., 2008).

DPI classifies traffic by analyzing the protocol payload. Recent

evelopments allow primitive classification of HTTPS (encrypted)

raffic (Miller et al., 2014). It has been shown FTE can bypass both

ule-based analysis and DPI (Dyer et al., 2013; 2015).

“Stateful” firewalls avoid certain attacks by only permitting traf-

c if the traffic obeys the underlying protocol. For instance, TCP

raffic is required to complete the handshake before data packets

re allowed through the firewall. Houmansadr et al. (2013b) used

n extension of this idea to identify protocol mimicry. By classi-

ying the states of a host protocol, it is possible to identify poor

mitations by identifying discrepancies between observed and ex-

ected states. Housmansadr et. al used this to find where Skype-

orph differed from Skype. Once differences were identified, sim-

le rules can identify SkypeMorph traffic.

Hidden Markov Models (HMMs) have been used in side-channel

nalysis to identify Synchrophasor traffic in an encrypted VPN

 Zhong et al., 2015a). HMM inference occurs offline, and it requires

4 J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777

Fig. 2. Detailed example of how a deterministic HMM is inferred from packet tim-

ing.

s

u

d

s

t

K

w

t

(

T

b

F

t

(

f

I
a large sample of traffic to build the timing model of the uniden-

tified protocol. In the future, HMM detection will likely be per-

formed online.

Statistical analysis is a hybrid approach that attempts to use

statistical properties to identify traffic. Chaos theory is one ap-

proach to statistical detection (Zhao and Shi, 2012). Entropy has

also been used with distributed denial of service (DDoS) detection,

but entropy can easily be spoofed (Özçelik and Brooks, 2015). We

use statistical analysis to compare the timing models of the origi-

nal traffic with the traffic we generated.

Our variation of protocol mimicry uses a protected static pro-

tocol. We use this term to refer to a specific subset of protocols

that are prime candidates for protocol mimicry. Static protocols

are UDP-based and lack application-layer handshakes (like those in

Skype), making them immune to stateful analysis. The final layer

of security is choosing protocols that are protected . These proto-

cols have high collateral damage for false positives. If Synchropha-

sor packets are dropped, it can have adverse consequences for the

power grid.

4. Hidden Markov models

A Markov model is a tuple G = (S, T , P) where S is a set of states

of a model, T is a set of directed transitions between the states, and

P =

{
p(s i , s j)

}
is a probability matrix associated with transitions

from state s i to s j such that: ∑

s j ∈ S
p(s i , s j) = 1 , ∀ s i ∈ S (1)

A Markov model satisfies the Markov property, where the next

state only depends on the current state. An HMM is a Markov

model with unobservable states. A standard HMM (Eddy, 1996; Ra-

biner, 1989) has two sets of random processes: one for state tran-

sition and the other for symbol outputs. HMMs have been used to

effectively model time series data (Asadi et al., 2016). A determin-

istic HMM (Lu, 2012; Lu et al., 2013; Schwier, 2009) is used in this

paper, and it has one random processes for state transitions. Dif-

ferent output symbols are associated with transitions with differ-

ent probability. This representations is equivalent to the standard

HMM (Lu et al., 2013; Vanluyten et al., 2008).

4.1. Inferring deterministic HMMs

Deterministic HMM inference is depicted in Fig. 2 . A stream of

network packets, Fig. 2 a, is observed. The interpacket delay (time

between each packet) is calculated, and the values are plotted in

a histogram. This histogram is grouped into different states, and

these states manifest themselves as peaks in the histogram. In

Fig. 2 b, there are three peaks. Each peak is given a unique la-

bel. The stream of interpacket delays is re-interpreted using the

assigned labels. A stream of labels, as shown in Fig. 2 c, is used

to infer the deterministic HMM shown in Fig. 2 d. Each state in

the HMM corresponds to a label. The probability of an ‘a’ output

expression in state ‘b’ is given by the number of occurrences of

the string ‘ba’ divided by the number of occurrences of the string

‘b’. If there were 10 0 0 occurrences of the string ‘b’, and we know

the string ‘ba’ occurred 250 times, then 25% of the time we tran-

sitioned to state ‘a’. The full process for inferring deterministic

HMMs is provided in Griffin et al. (2011) and Schwier et al. (2009) .

Given a deterministic HMM, it is possible to generate a stream of

packet timings.

4.2. Comparing deterministic HMMs

In Lu et al. (2013) , the authors develop a normalized metric

space for comparing HMMs, and in Yu et al. (2013) the authors
how a method for ensuring an inferred HMM is significant. We

se an alternative approach that is tailored to this challenge. Before

etermining whether two deterministic HMMs are equal, it is de-

irable to ensure the probability distribution functions (PDFs) used

o generate the HMM are equal. To do this, we use the two-sample

olmogornov–Smirnov (KS) test (Kolmogorov-Smirnov Test, 2008),

hich tests the null hypothesis (two sets of samples come from

he same underlying distribution) against the alternate hypothesis

two sets of samples come from different underlying distributions).

he KS statistic is the empirical distribution function F n , defined

elow.

 n (x) =

1

n

n ∑

i =1

I (−∞ ,x] (X i) (2)

Here, n refers to the number of identically independently dis-

ributed samples (X i) taken from the sample space (X). Samples

 X i) are randomly chosen observations from Fig. 2 a. The indicator

unction, I (−∞ ,x] (X i) , is defined in Eq. (3) .

 [−∞ ,x] (X i) =

{
1 , X i < x
0 , otherwise

(3)

J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777 5

e

D

f

D

i

t

e

a

d

a

i

s

χ

s

c

r

e

E

E

b

i

(

D

T

p

5

t

i

e

m

t

t

l

v

S

5

C

r

i

F

b

i

s

2

Fig. 3. Example protocol to illustrate observation-based FTE.

a

f

f

F

d

b

o

f

b

s

d

o

e

p

b

t

T

t

g

S

W

|

P

i

S

H

e

l

H

3 Since the data being mapped to the protocol is encrypted using AES encryp-

tion and AES produces a high-entropy bitstream (Lyda and Hamrock, 2007), we can

assume 0 and 1 are equally likely in practice.
The two-sample KS test compares the distance between the two

mpirical distribution functions using Eq. (4) .

 n,m = sup
x

| F 1 ,n (x) − F 2 ,m (x) | (4)

The null hypothesis is rejected at the 95% confidence level if the

ollowing criterion is met.

 n,m > 1 . 36

√

n + m

nm

(5)

To determine whether two deterministic HMMs are equivalent,

t is sufficient to show all corresponding states in the determinis-

ic HMM are equivalent. If all states are equivalent, the HMMs are

quivalent. To show two states of a deterministic HMM are equiv-

lent, we use the χ2 -test for homogeneity to test if the probability

istributions for outgoing state transitions are statistically equiv-

lent. The generic expression for the χ2 statistic for homogene-

ty given P populations and C levels of the categorical variable is

hown below.

2 =

∑

i ∈ P

∑

j∈ C

(
O i, j − E i, j

)2
E i, j

(6)

In this representation, O i,j is the number of occurrences ob-

erved in the state corresponding to i and the output expression

orresponding to j . Similarly, E i,j is the number of expected occur-

ences for the combination of state and output expression. The

xpected number of occurrences is calculated as shown below in

q. (7) .

 i, j =

n i n j

n
(7)

Here, n i is the number of observations in state i, n j is the num-

er of observations at that level of the categorical variable, and n

s the sample size. For threshold testing, the degrees of freedom

 DF) is given as follows.

F = (P − 1)(C − 1) (8)

In this work, we compare two states (populations), so P is 2.

herefore, the DF for any given state is simply the number of out-

ut expressions (C) minus one.

. Architecture

Converting TCP-based Tor traffic to the UDP Synchrophasor pro-

ocol requires a number of building blocks that were not present

n Zhong et al. (2015b) . The TCP packet must be converted to sev-

ral Synchrophasor packets. The packet timing of outgoing packets

ust be adjusted to model the timing of Synchrophasor traffic. A

ransport layer converter is required to tunnel TCP-based protocols

hrough UDP protocols while still maintaining TCP’s guaranteed de-

ivery. Finally, these building blocks can be linked together to pro-

ide a proof-of-concept that can convert Tor’s TCP traffic to UDP

ynchrophasor traffic.

.1. Observation-based FTE

Simply sending UDP packets to a specific port isn’t enough.

apturing the packet in an analysis tool like Wireshark (2019) will

eveal the packet is malformed. While this rises to the level of ex-

sting obfuscation PTs, it does not solve the problem. Traditional

TE takes the syntax of a protocol and creates a PCFG to map raw

inary data to that protocol’s syntax (Dyer et al., 2012). Determin-

ng the appropriate PCFG to model a protocol is left as an open re-

earch question, which makes it unrealistic to deploy (Dyer et al.,

013; 2015).
We propose observation-based FTE, as an alternative. We collect

 substantial amount of traffic and record the unique observations

or each field in the protocol. If Alice and Bob want to encode in-

ormation using observation-based FTE with the protocol shown in

ig. 3 , they construct a lookup table with each field and an or-

ered list of observations. This lookup table is a shared out-of-

and. High-entropy (encrypted) information can be encoded using

bservation-based FTE by construction a packet using observations

rom the host protocol. With the protocol in Fig. 3 , three bits can

e encoded in the first field. When Alice receives the message and

ees ‘observation 5’ in ‘field 1’, she uses the shared lookup table to

etermine the first three encoded bits are ‘101’ (the binary value

f the observation’s index). The high-entropy input also ensures

ach field (and each packet) is independent of the other fields (and

ackets) 3 .

Zhong et al. (2015b) used a primitive version of observation-

ased FTE that did not consider the upper bound on the informa-

ion capacity of an FTE channel.

heorem 1. For a given protocol, the maximum amount of informa-

ion that can be encoded in a packet using observation-based FTE is

iven by:

 =

∑

γi ∈ �
log 2 (| γ i |) (9)

here � = { γ1 , γ2 , ..., γn } is the set of n fields in the protocol, and
 γ i | is the number of unique observations in that field.

roof. The maximum amount of information that can be encoded

n a particular field using observation-based FTE is given by the

hannon entropy of that field.

(γi) = −
∑

x ∈ γi

p(x) log 2 (p(x)) (10)

Each stream of n bits is equally likely. 3 Therefore, the choice of

ach observation is equally likely. This simplifies Eq. (11) as fol-

ows.

(γi) = −
∑

x ∈ γi

1

| γi | log 2
(

1

| γi |
)

= −| γi | 1 | γi | log 2
(

1

| γi |
)

= −log 2

(
1

| γi |
)

= log 2 (| γi |) (11)

6 J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777

Fig. 4. Process for segmenting TCP packets for transmission.

5

P

W

o

r

g

w

n

e

t

t

c

n

d

t

p

5

c

4 ECB is used because packets may arrive out of order, which makes cipher block

chain impractical.
The amount of information that can be encoded in a single

packet is the sum of the information that can be encoded in each

field in the packet.

S =

∑

γi ∈ �
log 2 (| γi |) (12)

�

Performing these calculation on the Synchrophasor protocol

yields 516 bits that can be encoded in a single UDP packet. Since

this is smaller than the typical TCP packet, it is necessary to seg-

ment TCP packets for transmission. The optimal average good-

put (G avg) can be calculated with Eq. (13) , where S is found us-

ing Eq. (12) , and T avg is the average interpacket delay, which is

0.03334 s for Synchrophasor traffic. This yields an theoretical av-

erage goodput of 15,477 bits per second.

G avg =

S

T avg
(13)

Segmentation is shown in Fig. 4 , where each item below is in-

dicated in the figure:

1. The original TCP packet is taken.

2. The packet length is prepended to the beginning of packet as a

four byte unsigned integer.

3. The packet is broken into 63 byte chunks, and each chunk is

prepended with a one byte sequence numbers for a total of 64

bytes. The sequence number allows the chunks to be reassem-

bled later into the original TCP packet. Depending on the size of

the packet, it is possible there will not be enough payload data

to fill the final chunk. In this case, random data is appended to

the end.
4. Each 64 byte chunk is encrypted with Electronic Code Book

(ECB) encryption 4 .

5. The observation-based FTE encodes each 64 byte (512 bit)

chunk into a 516 bit UDP payloads using the method previously

discussed.

.2. Packet timing

The HMM timing model described in Section 4 was given to the

rotocol Proxy, which queries the timing model for a timing value.

hen the model is queried, it examines its current state, yields an

utput expression based on the probability distribution of the cur-

ent state, and chooses a timing value from the output expression

roup. The model advances to the chosen state. The Protocol Proxy

aits for the allotted time before sending a packet. If there are

o packets to send, random data is encoded and sent. These pack-

ts are dropped by the server. Sending placeholder packets ensures

he correct timing model is emulated when there are no packets to

ransmit.

This approach to packet timing differs from the NDN covert

hannel proposed in Ambrosin et al. (2014) . Our approach does

ot convey any information using interpacket delays. Interpacket

elays can often be an indicator of a covert channel, so we ensure

he timing of the covert channel is statistically identical to the host

rotocol.

.3. Protocol Proxy

The Protocol Proxy combines the previous elements to create a

overt channel using the host protocol.

J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777 7

Fig. 5. Architecture for the Protocol Proxy transport converter.

Listing 1. The iptables command to disable RST packets.

c

c

c

i

r

T

a

d

R

w

p

c

s

a

i

f

I

t

t

p

p

t

d

T

m

T

a

t

t

i

c

t

S

6

s

m

t

o

s

P

s

c

b

t

(

c

t

e

i

s

/

f

t

c

c

T

f

I

t

b

t

t

1

t

b

w

c

c

t

7

S

o

p

d

s
We use Scapy (Biondi, 2008) 5 to capture TCP packets. These

aptured packet includes both the TCP header and payload. Appli-

ations using the Protocol Proxy are configured to send traffic to a

losed loopback port, and Scapy sniffs the loopback interface look-

ng for traffic destined to that port. By default, when a closed port

eceives a TCP packet, it responds with a TCP RST (reset) packet.

he RST packet immediately terminates the connection and ceases

ll communication with the other host. This is a low-level response

ictated by the host firewall. The transport converter requires this

ST packet not be sent, so the internal firewall (iptables on Linux)

as modified accordingly. The following command disables RST

ackets for all ports on Linux.

In Figure 5 , an application on the client sends a packet to a

losed local port (8001 in our example). Scapy sniffs the network

tack and captures the entire packet. The Ethernet and IP layers

re stripped, and the packet is transformed into a UDP payload us-

ng observation-based FTE, as described in Section 5.1 . After trans-

orming the packet into the host protocol’s payload, new Ethernet,

P, and UDP layers are generated so the packet can be sent across

he network to the server. All the UDP packets are sent to the port

hat corresponds to the emulated protocol. The timing of outgoing

ackets is determined by the HMM described in Section 5.2 .

On the server, the Protocol Proxy listens on the predetermined

ort for the UDP packet. Once it receives the UDP packet, it takes

he UDP payload, reverses the observation-base FTE transformation

escribed in Section 5.1 , and sends it to a Scapy packet injector.

he Scapy packet injector creates new Ethernet and IP layers to

ake the packet look like it originated from the local machine.

hen, Scapy injects the new packet into the local network stack,

nd it is received by the local application. This provides a bidirec-

ional covert channel that uses actual observations from host pro-

ocol.

Since the Protocol Proxy is accessed via an open port, it is triv-

al to integrate with Tor. Tor natively supports tunneling outgoing

onnections through a SOCKS proxy, so the Tor client is configured

o use the Protocol Proxy port as a SOCKS proxy. On the server, a

OCKS server listens for traffic forwarded from the Protocol Proxy.

. Experiment setup

Over 770,0 0 0 samples were collected from the PMUs in Clem-

on’s RTPIS Laboratory (RTPIS, 2019). These samples were used to
5 Scapy is a Python library for packet capture, manipulation, and injection

s

P

t
odel the timing of the protocol as described in Section 5.2 . All

esting was done in Clemson’s security lab with clean installations

f Arch Linux (kernel version 4.17.2-1). The experiment setup is

hown in Fig. 6 . We used scp to transfer data over the Protocol

roxy to an SSH server on a remote machine. The Protocol Proxy

erver was launched using the following command. server# proto-

ol_proxy server 192.168.10.23 8001

Since the Protocol Proxy requires access to raw sockets, it must

e executed by a privileged user. The ‘server’ option tells the Pro-

ocol Proxy to expect packets originating from the specified port

8001). The IP address (192.168.10.23) is the IP address of the

lient that will connect to the server. The next step is to ensure

he kernel does not send a reset packet (TCP RST) when pack-

ts are sent to the closed port (8001). This is done by execut-

ng the iptables command shown in Listing 1 . Next, the SSH

erver is set to listen to port 8001 for incoming connections in the

etc/ssh/sshd_config file. SSH (OpenSSH_7.7p1) was used

or the server. It was necessary to configure a non-standard port

o avoid conflict when forwarding the traffic through the Proto-

ol Proxy. The client was launched with the following command.

lient# protocol_proxy client 192.168.10.24 8001

Again, the application must be executed by a privileged user.

he ‘client’ option tells the transport to expect packets destined

or the specified port (8001). The IP address (192.168.10.24) is the

P address of the host executing the program. As with the server,

he client does not open the port, so the rules in Listing 1 must

e applied to the client to ensure TCP connections are not prema-

urely terminated.

A one kilobyte data file was transferred from the client to

he server using scp as shown below. client# scp -P 8001 file

27.0.0.1:file

The destination port was set to 8001 on the client, which was

he local port being forwarded to the Protocol Proxy. The traffic

etween the client to the server was captured, and another HMM

as inferred from this generated traffic. This second HMM was

ompared via the χ2 -test to the original HMM used by the Proto-

ol Proxy. Finally, the baseline goodput was measured by recording

he time required to transfer the 1 kilobyte data file.

. Results

Figure 7 shows the histogram of interpacket delay times for the

ynchrophasor traffic captured in Clemson’s RTPIS laboratory. The

utput expressions are labeled in the histogram according to the

rominent peaks. Using the techniques described in Section 4 , the

eterministic HMM in Figure 8 was inferred.

With this HMM, it was then possible to generate Synchropha-

or traffic with observation-based FTE and accurate timing. Fig. 9

hows a Wireshark deconstruction of the traffic generated with our

rotocol Proxy. Wireshark correctly identifies the Protocol Proxy

raffic as Synchrophasor traffic and is able to parse the field val-

8 J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777

Fig. 6. The Protocol Proxy integrated for use with SCP.

Fig. 7. Histogram of the interpacket delay of real Synchrophasor traffic with states

labeled.

Fig. 8. HMM generated from the interpacket delay of Synchrophasor traffic.

Fig. 9. Wireshark decoding of the Protocol Proxy traffic.

p

s

t

h
ues from the payload. The checksum is also correctly calculated.

This FTE-generated PMU traffic is accepted by the Phasor Data

Concentrators–the hardware PMU datastore (Zhong et al., 2015b).

Since packets generated by the Protocol Proxy only use previously

observed field values, the Protocol Proxy is syntactically equivalent

to the host protocol. Any rule that would detect Protocol Proxy

traffic would have false-positives on legitimate PMU traffic, and

these false-positives would lead to significant collateral damage.

Fig. 10 shows the histogram of interpacket delay times for the

generated traffic with the output expressions labeled. Fig. 11 shows

the deterministic HMM inferred from the histogram to model the

timing patterns of the Protocol Proxy traffic. Visually, this model

appears almost identical to the model used to generate the traffic.

Before determining if the two deterministic HMMs were equal,

the two-sample KS test was applied to the two distributions

(shown in Figs. 7 and 10). To apply this test, we randomly sam-
le each distribution 100 times and apply the test using the two

ets of samples. The p-value for the two-sample KS test was found

o be 0.21, so with a threshold of 0.05, we fail to reject the null

ypothesis. The interpacket delay times of the Protocol Proxy are

J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777 9

Fig. 10. Histogram of the interpacket delay of generated Synchrophasor traffic with

states labeled.

Fig. 11. HMM generated from the interpacket delay of the generated Synchrophasor

traffic.

Table 1

State-wise χ2 test for homogeneity comparing HMMs.

State Comparison Inferred-Inferred Generated-Inferred

(p -value) (p -value)

a-a 0.75 0.82

b-b 0.19 0.37

c-c 0.06 0.15

f

t

H

h

T

1

fi

a

t

T

t

c

p

Table 2

Comparison of observed and theoretical goodput

through the Protocol Proxy.

Baseline Theoretical Observed

Goodput 54 Mbps 15,477 bps 182 bps

c

h

M

f

t

r

p

P

M

8

t

c

w

p

a

m

c

t

p

h

i

s

t

t

d

i

c

m

w

b

L

h

e

i

i

(

b

P

t

s

p

w

T

t

p

m

f

6 https://speedof.me
7 The conversion from TCP to UDP is not intended to provide an additional layer

of security. It is necessary because the host protocol is UDP-based, and it is an open

challenge in PT development.
rom the probability distribution as the interpacket delay times of

he original Synchrophasor traffic.

To determine if the two deterministic HMMs were equal, the

MMs were checked for state-wise equality using the χ2 test for

omogeneity. The p-values for the χ2 test are shown in Table 1 .

he first comparison (inferred-inferred) infers two HMMs using

0,0 0 0 samples and a random starting point in the original traf-

c. From these values, we fail to reject the null hypothesis (with

n α value of 0.05) for every state and are left to conclude the

raffic is homogeneous , which means it does not change over time.

he second comparison (generated-inferred) infers one HMM from

he Protocol Proxy traffic and another HMM from the original Syn-

hrophasor traffic. From these values, we fail to reject the null hy-

othesis (with an α value of 0.05) for every state and are left to
onclude the traffic from the Protocol Proxy is equivalent to the

omogeneous Synchrophasor traffic.

The baseline goodput (link speed) was determined to be 54

bps, while the goodput through the PMU Protocol Proxy was

ound to be 182.2 bits per second. These values are compared to

he theoretical goodput in Table 2 . The difference between theo-

etical and observed goodput is attributed to retransmission and

acket overhead (the TCP header is sent through the Protocol

roxy). We measured the goodput through Tor to be around 7.31

bps using an online speed test 6 .

. Conclusion and future work

Covert communication techniques must evade several types of

hreats: rule-based detection, DPI, stateful protocol analysis, side-

hannel analysis, and statistical analysis. To address these issues,

e presented a novel approach for tunneling TCP traffic through

rotected static protocols. Protected protocols have collateral dam-

ge associated with false positives, and static protocols are deter-

inistic UDP-based protocols whose pattern never changes. To ac-

omplish this, we introduced (1) an architecture to convert TCP

raffic to UDP traffic 7 , (2) observation-based FTE to mimic the host

rotocol’s payload, and (3) a deterministic HMM to model the

ost protocol’s interpacket timing. The Wireshark packet capture

n Fig. 9 illustrates objectives (1) and (2)–Protocol Proxy traffic is

yntactically equivalent to the host protocol. The χ2 test shows the

iming generated by the Protocol Proxy is statistically equivalent to

he host protocol.

This extends the simulation present in Zhong et al. (2015b) by

eveloping an architecture to perform the protocol transformations

n real-time. The Protocol Proxy provides a universal interface for

onnecting applications. A theoretical upper-bound for the infor-

ation capacity of an observation-based FTE channel was derived,

hich facilitated the improvement of the previous observation-

ased FTE implementation. During testing, it was found some

inux distributions were incapable of emulating the timing of the

ost protocol. Arch Linux was chosen for its ability to consistently

mulate timing. The cause of this discrepancy is currently being

nvestigated. The Protocol Proxy does not transmit information us-

ng the interpacket delay as with the NDN-based covert channel

 Ambrosin et al., 2014), and the presence of NDN traffic itself could

e enough to indicate a covert channel.

Future work will provide an in-depth security analysis of the

rotocol Proxy, decrease the overhead associated with packet re-

ransmissions, and adapt the Protocol Proxy to Tor’s PT version 2.0

pecification (Internews, 2017). While the Protocol Proxy’s good-

ut was significantly slower than Tor, the use-case is situations

hen any anomalous traffic could have negative repercussions.

his trade-off between performance and detection is justified in

hose cases. We will also investigate a number of performance im-

rovements. For instance, the entire TCP packet is currently trans-

itted through the proxy, but in reality much less data is required

or most packets. The Protocol Proxy approach may be vulnerable

https://speedof.me

10 J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777

B

C

D

D

F

F

F

F

G

H

H

T
F

K

K

L

M

M

M

Y

P
R

R

S

I
U

S
S

S

S

to semantic analysis using probabilistic context-free grammars, but

these techniques are not currently used in the wild for scalability

reasons.

The Protocol Proxy is a viable alternative to traditional trans-

ports when heightened anonymity is required. While there are

a number of improvements that will increase throughput, these

preliminary results show it is possible to tunnel a TCP session

through a UDP protocol and maintain TCP’s guaranteed delivery.

Observation-based FTE extends this and ensures the traffic will not

be detected by rule-based analysis or DPI. Furthermore, a deter-

ministic HMM ensures the Protocol Proxy accurately models in-

terpacket timing and avoids detection by side-channel analysis. Fi-

nally, the choice of a protected static protocol ensures stateful pro-

tocol analysis is useless while raising the collateral damage associ-

ated with false positives.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by, or in part

by, the National Science Foundation grants CNS-1049765 , OAC-

1547245 , and CNS-1544910 . The U.S. Government is authorized

to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The authors

gratefully acknowledge this support and take responsibility for

the contents of this report. The views and conclusions contained

herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, ei-

ther expressed or implied, of the National Science Foundation, or

the U.S. Government.

References

Ambrosin, M. , Conti, M. , Gasti, P. , Tsudik, G. , 2014. Covert ephemeral communica-

tion in named data networking. In: Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security. ACM, pp. 15–26 .

Asadi, N. , Mirzaei, A. , Haghshenas, E. , 2016. Creating discriminative models for time
series classification and clustering by HMM ensembles. IEEE Trans. Cybern. 46

(12), 2899–2910 .
iondi, P., 2008. Scapy. [Online]. Available: https://scapy.net/ .

ui, X. , Tsang, Y.H. , Hui, L.C. , Yiu, S. , Luo, B. , 2016. Defend against internet censorship

in named data networking. In: 2016 18th International Conference on Advanced
Communication Technology (ICACT). IEEE, pp. 300–305 .

ingledine, R. , 2011. Ten Ways to Discover Tor Bridges. Technical Report. Technical
Report 2011-10-002, The Tor Project, October 2011. https://research. torproject.

org/techreports/tenwaysdiscover-tor-bridges-2 11-1-31. pdf, Tech. Rep., 2011. 4,
10 .

yer, K.P. , Coull, S.E. , Ristenpart, T. , Shrimpton, T. , 2012. Format-transforming en-

cryption: more than meets the dpi.. IACR Cryptol. ePrint Arch. 2012, 494 .
Dyer, K.P. , Coull, S.E. , Ristenpart, T. , Shrimpton, T. , 2013. Protocol misidentifica-

tion made easy with format-transforming encryption. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security. ACM,

pp. 61–72 .
Dyer, K.P. , Coull, S.E. , Shrimpton, T. , 2015. Marionette: a programmable network traf-

fic obfuscation system.. In: USENIX Security Symposium, pp. 367–382 .

Eddy, S.R. , 1996. Hidden Markov models. Current Opin. Struct. Biol. 6 (3), 361–365 .
ifield, D. , Lan, C. , Hynes, R. , Wegmann, P. , Paxson, V. , 2015. Blocking-resistant com-

munication through domain fronting. Proc. Privacy Enhanc. Technol. 2015 (2),
46–64 .

ridrich, J. , 2006. Minimizing the embedding impact in steganography. In: Proceed-
ings of the 8th Workshop on Multimedia and Security. ACM, pp. 2–10 .

u, Y. , Jia, Z. , Yu, L. , Zhong, X. , Brooks, R. , 2016. A covert data transport protocol.
In: 2016 11th International Conference on Malicious and Unwanted Software

(MALWARE). IEEE, pp. 1–8 .

u, Y. , Yu, L. , Hambolu, O. , Ozcelik, I. , Husain, B. , Sun, J. , Sapra, K. , Du, D. ,
Beasley, C.T. , Brooks, R.R. , 2017. Stealthy domain generation algorithms. IEEE

Trans. Inf. Forensics Secur. 12 (6), 1430–1443 .
Garnaev, A. , Baykal-Gursoy, M. , Poor, H.V. , 2016. Security games with unknown ad-

versarial strategies. IEEE Trans. Cybern. 46 (10), 2291–2299 .
riffin, C. , Brooks, R.R. , Schwier, J. , 2011. A hybrid statistical technique for modeling
recurrent tracks in a compact set. IEEE Trans. Autom. Control 56 (8), 1926–1931 .

Guan, Y. , Fu, X. , Xuan, D. , Shenoy, P.U. , Bettati, R. , Zhao, W. , 2001. Netcamo: cam-
ouflaging network traffic for QoS-guaranteed mission critical applications. IEEE

Trans. Syst. Man. Cybern. Part A 31 (4), 253–265 .
Heydari, V. , Kim, S. , Yoo, S.-M. , 2017. Scalable anti-censorship framework using mov-

ing target defense for web servers. IEEE Trans. Inf. Forensics Secur. 12 (5),
1113–1124 .

oang, N.P. , Kintis, P. , Antonakakis, M. , Polychronakis, M. , 2018. An empirical study

of the i2p anonymity network and its censorship resistance. In: Proceedings of
the Internet Measurement Conference 2018. ACM, pp. 379–392 .

Houmansadr, A. , Brubaker, C. , Shmatikov, V. , 2013. The parrot is dead: observing
unobservable network communications. In: Security and Privacy (SP), 2013 IEEE

Symposium on. IEEE, pp. 65–79 .
oumansadr, A. , Riedl, T.J. , Borisov, N. , Singer, A.C. , 2013. I want my voice to be

heard: Ip over Voice-over-IP for unobservable censorship circumvention.. NDSS .

or, 2019. [Online]. Available: https://www.torproject.org/ .
reenet, 2001. [Online]. Available: https://freenetproject.org/author/

freenet-project-inc.html .
Brandom, R., 2018. Iran blocks encrypted messaging apps amid nation-

wide protests. Available: https://www.theverge.com/2018/1/2/16841292/
iran-telegram-block-encryption-protest-google-signal .

I2P’s Threat Model, 2010. [Online]. Available: https://geti2p.net/en/docs/how/

threat-model .
Internews, 2017. New pluggable transport specification version 2.0, draft 2 is out.

Kolmogorov-Smirnov Test, 2008. Springer New York, New York, NY. pp. 283–287.
10.1007/978-0-387-32833-1_214.

im, H. , Claffy, K.C. , Fomenkov, M. , Barman, D. , Faloutsos, M. , Lee, K. , 2008. Inter-
net traffic classification demystified: myths, caveats, and the best practices. In:

Proceedings of the 2008 ACM CoNEXT Conference. ACM, p. 11 .

iyavash, N. , Koushanfar, F. , Coleman, T.P. , Rodrigues, M. , 2013. A timing chan-
nel spyware for the CSMA/CA protocol. IEEE Trans. Inf. Forensics Secur. 8 (3),

477–487 .
Kügler, D. , 2003. An analysis of GNUnet and the implications for anonymous, cen-

sorship-resistant networks. In: International Workshop on Privacy Enhancing
Technologies. Springer, pp. 161–176 .

Lantern, 2013. Open Internet for all. Available: https://getlantern.org/en US/.

Lu, C., 2012. Network traffic analysis using stochastic grammars.
Lu, C. , Schwier, J.M. , Craven, R.M. , Yu, L. , Brooks, R.R. , Griffin, C. , 2013. A normalized

statistical metric space for hidden Markov models. IEEE Trans. Cybern. 43 (3),
806–819 .

yda, R. , Hamrock, J. , 2007. Using entropy analysis to find encrypted and packed
malware. IEEE Secur. Privacy 5 (2), 40–45 .

iller, B. , Huang, L. , Joseph, A.D. , Tygar, J.D. , 2014. I know why you went to the

clinic: risks and realization of HTTPs traffic analysis. In: International Sympo-
sium on Privacy Enhancing Technologies Symposium. Springer, pp. 143–163 .

Mohajeri Moghaddam, H. , Li, B. , Derakhshani, M. , Goldberg, I. , 2012. Skypemorph:
protocol obfuscation for Tor bridges. In: Proceedings of the 2012 ACM Confer-

ence on Computer and Communications Security. ACM, pp. 97–108 .
oshchuk, A. , Gribble, S.D. , Levy, H.M. , 2008. Flashproxy: transparently enabling

rich web content via remote execution. In: Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services. ACM, pp. 81–93 .

osko, M., 2014. Ccnx 1.0 protocol introduction.

awning, 2019. obfs4. [Online]. Available: https://github.com/Yawning/obfs4 .
Özçelik, ̇I. , Brooks, R.R. , 2015. Deceiving entropy based dos detection. Comput. Secur.

48, 234–245 .
obfsproxy, 2015. [Online]. Available: https://gitweb.torproject.org/

pluggable-transports/obfsproxy.git .
Pluggable Transports, 2020. [Online]. Available: https://www.pluggabletransports.

info/ .

siphon, 2006. [Online]. Available: https://www.psiphon3.com/en/index.html .
abiner, L.R. , 1989. A tutorial on hidden Markov models and selected applications

in speech recognition. Proc. IEEE 77 (2), 257–286 .
Rios, R. , Onieva, J.A. , Lopez, J. , 2013. Covert communications through network con-

figuration messages. Comput. Secur. 39, 34–46 .
oos, S. , Schiller, B. , Hacker, S. , Strufe, T. , 2014. Measuring freenet in the wild: cen-

sorship-resilience under observation. In: International Symposium on Privacy

Enhancing Technologies Symposium. Springer, pp. 263–282 .
Schmidt, S. , Mazurczyk, W. , Kulesza, R. , Keller, J. , Caviglione, L. , 2018. Exploiting ip

telephony with silence suppression for hidden data transfers. Comput. Secur. 79,
17–32 .

chuchard, M. , Geddes, J. , Thompson, C. , Hopper, N. , 2012. Routing around decoys.
In: Proceedings of the 2012 ACM Conference on Computer and Communications

Security. ACM, pp. 85–96 .

2P, 2003. The invisible internet project. [Online]. Available: https://geti2p.net/en/ .
ltrasurf, 2002. [Online]. Available: https://ultrasurf.us/ .

chwier, J., 2009. Pattern recognition for command and control data systems.
chwier, J.M. , Brooks, R.R. , Griffin, C. , 2011. Methods to window data to differentiate

between Markov models. IEEE Trans. Syst. Man Cybern.Part B 41 (3), 650–663 .
chwier, J.M. , Brooks, R.R. , Griffin, C. , Bukkapatnam, S. , 2009. Zero knowledge hid-

den Markov model inference. Pattern Recognit. Lett. 30 (14), 1273–1280 .

mith, R.W. , Knight, S.G. , 2010. Predictable three-parameter design of network
covert communication systems. IEEE Trans. Inf. Forensics Secur. 6 (1), 1–13 .

Tsudik, G. , Uzun, E. , Wood, C.A. , 2016. Ac3n: anonymous communication in con-
tent-centric networking. In: 2016 13th IEEE Annual Consumer Communications

& Networking Conference (CCNC). IEEE, pp. 988–991 .

https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0001
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0002
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0002
https://scapy.net/
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0003
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0004
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0005
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0006
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0007
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0008
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0009
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0010
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0011
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0012
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0013
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0014
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0016
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0017
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0018
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0019
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0019
https://www.torproject.org/
https://freenetproject.org/author/freenet-project-inc.html
https://www.theverge.com/2018/1/2/16841292/iran-telegram-block-encryption-protest-google-signal
https://geti2p.net/en/docs/how/threat-model
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0021
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0022
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0023
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0023
https://getlantern.org/en
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0025
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0026
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0027
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0028
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0028
https://github.com/Yawning/obfs4
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0029
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0029
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git
https://www.pluggabletransports.info/
https://www.psiphon3.com/en/index.html
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0030
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0031
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0032
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0033
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0034
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0034
https://geti2p.net/en/
https://ultrasurf.us/
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0035
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0036
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0037
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0038
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0038

J. Oakley, L. Yu and X. Zhong et al. / Computers & Security 92 (2020) 101777 11

V

W

W

W

W

W

R

W

Y

Y

Y

Z

Z

Z

Z

G

S

g

h

S

o

t

o

5

a

o

g

o

o

S

o

(

I

l

E

a

S

anluyten, B. , Willems, J.C. , De Moor, B. , 2008. Equivalence of state representations
for hidden Markov models. Syst. Control Lett. 57 (5), 410–419 .

einberg, Z. , Wang, J. , Yegneswaran, V. , Briesemeister, L. , Cheung, S. , Wang, F. ,
Boneh, D. , 2012. Stegotorus: a camouflage proxy for the Tor anonymity system.

In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security. ACM, pp. 109–120 .

iley, B. , 2011. Dust: a Blocking-Resistant Internet Transport Protocol. Technical re-
port. http://blanu. net/Dust. pdf .

inter, P. , Lindskog, S. , 2012. How the Great Firewall of China is Blocking Tor.

USENIX-The Advanced Computing Systems Association .
inter, P. , Pulls, T. , Fuss, J. , 2013. Scramblesuit: a polymorphic network protocol to

circumvent censorship. In: Proceedings of the 12th ACM Workshop on Work-
shop on Privacy in the Electronic Society. ACM, pp. 213–224 .

ustrow, E. , Swanson, C. , Halderman, J.A. , 2014. Tapdance: end-to-middle anticen-
sorship without flow blocking.. In: USENIX Security Symposium, pp. 159–174 .

TPIS, 2019. Real-time power and intelliigent systems (rtpis) laboratory. [Online].

Available: http://rtpis.org/ .
ireshark, 2019. https://www.wireshark.org/ .

ao, L. , Zi, X. , Pan, L. , Li, J. , 2009. A study of on/off timing channel based on packet
delay distribution. Comput. Secur. 28 (8), 785–794 .

u, L. , Schwier, J.M. , Craven, R.M. , Brooks, R.R. , Griffin, C. , 2013. Inferring statisti-
cally significant hidden Markov models. IEEE Trans. Knowl. Data Eng. 25 (7),

1548–1558 .

u, L. , Wang, Q. , Barrineau, G. , Oakley, J. , Brooks, R.R. , Wang, K.-C. , 2017. Tarn:
a SDN-based traffic analysis resistant network architecture. In: Malicious and

Unwanted Software (MALWARE), 2017 12th International Conference on. IEEE,
pp. 91–98 .

hang, L. , Afanasyev, A. , Burke, J. , Jacobson, V. , Crowley, P. , Papadopoulos, C. ,
Wang, L. , Zhang, B. , et al. , 2014. Named data networking. ACM SIGCOMM Com-

put. Commun. Rev. 44 (3), 66–73 .

hao, H. , Shi, Y.-Q. , 2012. Detecting covert channels in computer networks based on
chaos theory. IEEE Trans. Inf. Forensics Secur. 8 (2), 273–282 .

hong, X. , Arunagirinathan, P. , Ahmadi, A. , Brooks, R. , Venayagamoorthy, G.K. , 2015.
Side-channels in electric power synchrophasor network data traffic. In: Proceed-

ings of the 10th Annual Cyber and Information Security Research Conference.
ACM, p. 3 .

hong, X. , Fu, Y. , Yu, L. , Brooks, R. , Venayagamoorthy, G.K. , 2015. Stealthy malware

traffic-not as innocent as it looks. In: Malicious and Unwanted Software (MAL-
WARE), 2015 10th International Conference on. IEEE, pp. 110–116 .

NUnet, 2002. GNU’s framework for secure peer-to-peer networking. [Online].
Available: https://gnunet.org/ .

nowFlake, 2016. [Online]. Available: https://keroserene.net/snowflake/ .

Jonathan G. Oakley (S’14) received the B.S. degree in

electrical engineering from Clemson University, Clemson,
South Carolina, where he is currently pursuing the Ph.D.

Degree in computer engineering with the Holcombe De-
partment of Electrical and Computer Engineering. His re-

search interests include protocol mimicry, network traffic
analysis, cryptocurrencies, and Markov processes.

Lu Yu received the B.S. degree in information engineer-

ing and the M.S. degree in control theory from Xi’an
Jiaotong University, Xi’an, China, and the Ph.D. degree

in electrical engineering from Clemson University, Clem-
son, South Carolina. She is currently a research assis-

tant professor with the Holcombe Department of Elec-

trical and Computer Engineering, Clemson University. Her
research interests include cyber security and user privacy

and anonymity.
Xingsi Zhong (S’15) received the B.S. degree in math

from Jilin University, Changchun, China, in 2010 and the
M.S. degree in computer science from the University of

Texas Pan-American, Edinburg, TX, USA, in 2013. He is
currently working toward the Ph.D. degree in the Hol-

combe Department of Electrical and Computer Engineer-

ing, Clemson University, Clemson, SC, USA. He is cur-
rently a Research Assistant in the Real-Time Power and

Intelligent Systems Laboratory. His research interests in-
clude side-channels analysis, cyber-physical system secu-

rity, and computational intelligence.

Ganesh Kumar Venayagamoorthy (S’91-M’97-SM’02) is
the Duke Energy Distinguished Professor of Power En-

gineering and Professor of Electrical and Computer En-
gineering and Automotive Engineering at Clemson Uni-

versity. Prior to that, he was a Professor of Electrical

and Computer Engineering at the Missouri University of
Science and Technology (Missouri S&T), Rolla, USA from

2002 to 2011. Dr. Venayagamoorthy is the Founder (2004)
and Director of the Real-Time Power and Intelligent Sys-

tems Laboratory (http://rtpis.org). He holds an Honorary
Professor position in the School of Engineering at the Uni-

versity of Kwazulu-Natal, Durban, South Africa. Dr. Ve-

nayagamoorthy received his Ph.D. degree in Electrical En-
ineering from the University of Natal, Durban, South Africa, in February 2002. He

olds a MBA degree in Entrepreneurship and Innovation from Clemson University,
C.Dr. Venayagamoorthy’s interests are in the research, development and innovation

f smart grid technologies and operations, including intelligent sensing and moni-
oring, intelligent systems, integration of renewable energy sources, power system

ptimization, stability and control, and signal processing. He has published over

00 refereed technical articles. His publications are cited over 15,500 times with
 h-index of 60 and i10-index of 241. Dr. Venayagamoorthy has been involved in

ver 70 sponsored projects in excess of US $10 million. Dr. Venayagamoorthy has
iven over 500 invited keynotes, plenaries, presentations, tutorials and lectures in

ver 40 countries to date. Dr. Venayagamoorthy is involved in the leadership and
rganization of many conferences including the General Chair of the Annual Power

ystem Conference (Clemson, SC, USA) since 2013, and Pioneer and Chair/co-Chair

f the IEEE Symposium of Computational Intelligence Applications in Smart Grid
CIASG) since 2011. He is currently the Chair of the IEEE PES Working Group on

ntelligent Control Systems, and the Founder and Chair of IEEE Computational Intel-
igence Society (CIS) Task Force on Smart Grid. Dr. Venayagamoorthy has served as

ditor/Guest Editor of several IEEE Transactions and Elsevier Journals. Dr. Venayag-
moorthy is a Senior Member of the IEEE, and a Fellow of the IET, UK, and the

AIEE.

Richard R. Brooks (M’97 - SM’04) received the B.A. de-

gree in mathematical sciences from Johns Hopkins Uni-
versity, Baltimore, MD, USA, and the Ph.D. degree in

computer science from Louisiana State University, Baton

Rouge. He is currently a Professor with the Holcombe De-
partment of Electrical and Computer Engineering, Clem-

son University, Clemson, South Carolina. His research in-
terests include cyber security, adaptive distributed sys-

tems and game theory.

http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0039
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0039
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0039
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0039
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0040
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0041
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0042
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0042
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0042
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0043
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0044
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0044
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0044
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0044
http://rtpis.org/
https://www.wireshark.org/
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0045
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0046
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0047
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0048
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0049
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0050
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0051
http://refhub.elsevier.com/S0167-4048(20)30062-6/sbref0051
https://gnunet.org/
https://keroserene.net/snowflake/
http://rtpis.org

	Protocol Proxy: An FTE-based covert channel
	1 Introduction
	2 Related work
	2.1 Previous work

	3 Undetectability
	4 Hidden Markov models
	4.1 Inferring deterministic HMMs
	4.2 Comparing deterministic HMMs

	5 Architecture
	5.1 Observation-based FTE
	5.2 Packet timing
	5.3 Protocol Proxy

	6 Experiment setup
	7 Results
	8 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgments
	References

